
Electron scattering and bound-state energies in crossed N-chain wires. A comparative study

of discrete and continuous models

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys.: Condens. Matter 4 7103

(http://iopscience.iop.org/0953-8984/4/34/009)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 11/05/2010 at 00:26

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/4/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 4 (1992) 710>7114. Printed in the UK 

Electron scattering and bound-state energies in crossed 
N-chain wires. A comparative study of discrete and 
continuous models 

Yu B Gaididei, L I Malysheva and A I Onipko 
Bogolyubov Institute for Theoretical Physics, Kiev 143,252143, Ukraine 

Received 23 May I992 

AbstraeL A closed set of equations, which describe electron scattering in a right-angle 
intersection of Iwo ZD wires, is derived on the basis of the tight-binding Hamiltonian with 
the interaction behveen the neighbouring lattice sites, I n  the continuum limit, N -+ m, 
Na = constant (N is the number of coupled chains that constitute each wire, n is 
the lattice mnstant), the equations are shown V, be identical to those known in the 
matching theory for the continuous version of the model. An analytic mlution of the 
scatlering problem obtained yields the scattering amplitude of the single-mode electron- 
wave propagation and the equations determining the bound-stale energies of he sytem. 
It is shown that the bound-slate to band-slate energy gap has a qualitatively different 
dependence on N (i.e. on wire width) in the cases of even- and odd-parity bound slates. 
The eRed reveals itself in ultra-narrow channels, N < 10. The width dependence of the 
reflection and transmission probabilities in crossed ultra-namnv wires is also discussed. 

1. Introduction 

Much attention has recently been paid to the wave-like electron transport in various 
two-dimensional (ZD) geometries regarded as promising for nanoelectronics (see [I- 
71 and references therein). The objective in these studies was to understand the 
behaviour of electrons in quantum-size structures and to estimate the possibility of 
implementing electronic devices and integrated designs based on quantum-mechanics 
effects. This field of activities has become of practical importance due to the fast 
progress in nanometer-scale technology. 

Here we address the problem of ballistic (or coherent) electron transport through 
a right-angle intersection of N-chain wires. In contrast to the earlier work on 
the subject [I], which is based on the effective-mass Hamiltonian and consequently 
only refers to the continuous model of crossed wires, we use the tight-binding 
formalism, which has much wider applications and accounts for the discrete nature 
of real structures. In particular, we are able to investigate, in the framework of 
our approach, the properties of a system built up of an arbitrary number of chains 
(which is of interest to molecular electronics) and to identi@ the changes in transport 
characteristics, varying the wire width from its minimal value to infinity. Obviously, 
the continuous model is not appropriate for ‘narrow’ channels. One of the important 
questions to be answered here is, therefore, what ‘narrow’ really means in the context 
of the bound-state spectrum and the electron-transport characteristics of crossed 
wires. 
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Note that the tight-binding formalism has recently been applied to computational 
treatment of a similar problem of electron transport in wires with a side stub [2]. 
In this paper we show that the principal characteristics of wire crossing and related 
structures can be described quite accurately by analytic expressions, at least within 
and near the first-mode band. 

The paper is organized as follows. In section 2 we derive a set of basic equations 
for the scattering problem in crossed wires and show that the discrete model in the 
continuum limit is equimlent to the continuous one. For this purpose, a continuous 
version of the basic equations is rederived in the appendix In section 3, the energies 
of the ground state and the excited bound states in crossed wires with different 
chain numbers are calculated and compared with the corresponding results for the 
continuous model. Section 4 is devoted to the characteristics of the fundamental- 
mode propagation and section 5 concludes the discussion with a brief summary of 
the main results. 

2. Basic equations 

lb describe the system we use the standard one-electron Hamiltonian 

H = -4L .;aR + L aiaR+6R 
R R,S R 

where a; and a R  are the Fermi operators of crealtion and annihilation, respectively, 
of an electron on a site R Possible values of R and SR (the latter connects the 
site R with its nearest neighbours) are defined in the schematic representation of 
the crossed wires in figure 1. Each region of the system labelled with ‘left’, ‘right’, 
‘up’, ‘down’ and ‘in’ has an independent numbering of the lattice sites m, n = R. 
An electron’s potential is inftnite outside the lattice outlined in figure 1 as well as 
outside the picture plane. For the convenience of comparison (in the continuum 
limit) With the effective-mass approximation, the electron energy on the site R is 
set to be equal to -4L. In the latter case, the electron resonant transfer energy is 
L = -h2/ (2m*aZ) ,  where a is the lattice constant and m’ is the effective electronic 
mass in the wires. In terms of the effective-mass Hamiltonian just defined, an electron 
inside the wires is free and, in the classic sense, unbound. 

The solution of the time-independent Schrbdinger equation 

which determines the scattering behaviour in crossed wires, can be presented in the 
form 

for each of the labelled regions. The expansion coefficients I$&,+ with y = 1,r, up,d 
are 
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Figure 1. Schematic diagram of the lattice arrangement in a-d N-chain wires The 
numbering of the lattice sites, m ,  n, is independent for each of lhe labelled regions. In 
the ‘left’ and ‘r ightxbons,  m =DN, n =1,2, ... ; in the ‘up’ and ‘down‘ regions, 
m = 1,2, ..., n = 1, N ;  and m = 1 ,  N, n = 1, N in the ’in* region. a is the periodicity 
of the lattice. The full lines show the boundaries of the wires in the continuum limit, 
N - m, Nu = const. In this case the wire width is w = ( N  + l )u,  N k i n g  the wire 
width in the site number. 

In equations (4)-(7), xj = x j / ( N  + 1) is the quantum number of the transverse 
electron motion and kj is the longitudinal wave vector of the j t h  mode. The mode 
number 1” and the wave vector kio determine the energy of the incident electrons (in 
the left-hand region) 

E = 2L(cos(kj0)  +cos(xj,) - 2). (8) 

The rest of k j  and xj in the expansions (4)-(7) (including evanescent modes, for 
which the wave vectors are imaginary, k j  + ikj) are determined by the energy 
conservation law 

coS(ki0) t C0S(Xj,) = C0S(kj) t C0S(Xj). (9) 

The wave function (3)-(7) satisfies equation (2) in the regions ‘left’, ‘right’, 
‘up’ and ‘doan’ except at the boundaries of the region of intersection, where the 



- /=&in(xjn)*:,n. (13) 
n=l  N +  1 

exp(-ikj)tk, - 

On the other hand, in the region of intersection the Schrddinger equation can be 
solved formally using the Lifshitz method [8]. As a result, the expansion coeficienrs 
Q'" m,n are connected with rk, and t l j  by the equations 

where 

Making use of equation (14) in equations (10)-(13) we finally get, after some obvious 
algebra, 

sin((N + l )kj )  
sin(kj) exp(-i(N + l)kj)rk,  = -6j,j0exp(iNkj) + t i ,  + 
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sin(( N + l ) k j )  
sin( ki ) exp(-i(N + l)kj)tdkj = ti; + exp( -ikjo)Gi,jo 

where 
1 sin(xj)sin(Xj,) G . .  - 

J r J ‘  - N + l c o S ( k j )  - cos(x;,) 

In the continuum limit, it is natural to introduce a new wave vector qJ = k, 
related to the current-threshold wave vector k ,  = r / ( N  + 1). Then, taking the 
limit N + CO, N u  =constant, we need to make the following changes in the 
coefficients of equations (16)-(19): ( N  + l ) k ,  + r q , ,  exp(ik,) + 1, s in(kJ)  -+ q J ,  
G,,,, + G;,,, = ( 2 j j ’ / ( ~ ( j ’ ~  - 4:)). After the transformations outlined, the set of 
equations (15)-(19) coincides with equations (A5)-(A8) obtained for the continuous 
model (see appendix). 

The comparison just made proves that the continuous model is completely 
equivalent to its discrete analogue in the continuum limit. Evidently, the discrete 
model is more general and yet easier to handle. 

To conclude this section, we note that the above equations can be applied to 
structures of both T- and Ltype. Setting, for instance, t ; ,  or t t ,  to be zero, we obtain 
the case of a T structure for two different configurations of the scattering process. 
Equations for the L structure (the right-angle bend) follow from equations (15)-(19) 
if ti, = t i ,  = 0. 

3. Discrete levels in a crossed-wires system 

The components of the scattering amplitude rk, and 12, determine the probabilities 
of finding an electron in a certain region with the wave vector k j  in the j t h  mode 
and, additionally, the bound-state energies of the system. These energies manifest 
themselves as the poles of the scattering amplitude [9]. 

The existence of discrete levels, which correspond to the ground (even-parity) 
bound state and to the excited odd-parity bound state in the continuous model, 
was predicted by Schult er ai [l]. They solved the spectral problem directly, using 
computational methods. Here, we can look at the equations which allow one to 
investigate both the continuous and the discrete models. 

To get an analytic solution, we truncate the set (15)+9) on the sixth mode. 
Equating the denominators of rk, and rk2 to zero (none of the other rk, and t2, 
give extra poles), we get the following equations (in the six-mode approximation): 

where 
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In the continuum limit, the quantities Z, and Q,,,, should be redefined according to 
the rules formulated above. 

Equation (21) determines the ground-state energy E, and equation (22) the 
excited bound-state energy E,. These equations are exact if N 6 6. If we use 
them for one-, two-, . . ., and five-chain wires, we need to omit the terms which 
contain indices 2 to 6, 3 to 6 ,  . . . and 6, respectively. Note that the even modes do 
not contribute to E,, and that odd modes do not contribute to E,. 

Let us consider first the solution of equation (21) in the continuum limit. In the 
one-mode app-ation it reduces to 

- 2 1 + e x p ( - T d  = 1 
= d n ? +  1) 

which gives q1 = 0.5646 and we obtain for the ground-state energy ($I - Eltb)/Ellb 
= AE!') = -0.319, where El* = E(&, = 0) = h2?r2/(2m'w2) is the current- 
threshold energy, i.e. the bottom of the continuous spectrum of the system, and 
w = ( N  + 1)a. The correct value of AEi is -0.34 [l]. Thus, the contribution of 
the third and higher modes into the ground-state energy is only about six per cent. 
In particular, A E P )  =,-0.331. AEiq = -0.335. 

The roots of equation (21) (the unknown now is cosh(k,)) give the exact values 
of E, in a crossed N-chain-wire system with N = 1, 2, . . . ,6. For N > 6, E1,2(N) 
calculated in accordance with equations (21) and (22) are accurate to within three 
per cent or better. The results are presented in table 1, where for the sake of 
convenience we use two different energy units Elfb (as for the continuous model) 
and 21LI. Surprisingly, the continuous model gives the right order of AE,  even in 
crossed chains, N = 1. Still, if N < 10, the difference E,(N) - E? is far from 
negligible (see table 1). It is also worth emphasizing that the correct definition of 
the wire width is not ( N  - l)a, as couId be intuitively expected, but (N  + 1)a. The 
case N = 1 deserves special attention because it brings to light the nature of the 
bound state. Indeed, the discrete state in a crossed-chains system arises because the 
intersection site, which has four nearest-neighbour sites, is not equivalent to all the 
other sites. In a sense, it is a perturbed site. Therefore, the situation with bound 
states of a crossed-wires system is very similar to that of defect states in solids. In 
the case of finite-width crossed wires, the role of the perturbed sites is played by the 
corner sites of the intersection region, as was demonstrated in wave-function terms 

The position of the excited bound-state level E2 is determined by equation (22), 
in [l]. 

which can be rewritten in the continuum limit in the twomode approximation as 

8 1 - exp( -?rq,) = 1. - 
9 2 ( 4 + 4 )  
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Its solution is qz = 0.4632 and we get AE?’ = (E?) - Ez&)/Elt,, = -0.215. 
Comparing this value with AE, = -0.28 [I], we see that the lowest approximation 
does not work as well as for El. Making two further steps, AEp’ = -0.249, 
AEP) = -0.262, we obtain a good agreement with the Schult, Ravenhall and Wyld 
computational result. 

Our calculations show that the odd-parity state appears first in the three-chain 
system at the edge of the second-mode band, i.e. AEz(3) = 0. The state separates 
from the band in the four-chain system, AE2(4) = -0.032 (in the units of Elm) 
(see table 1). Reasons for the absence of this state in the case of N < 4 are easily 
understood by noting that the wave function of the odd-parity bound state is zero in 
the middle of the intersection region. 

Tabk 1. Discrete levels in the cmssed Nchain  wires. lAEyz)l is the separation of an 
even-pan’ty (odd-parity) bound state from the bottom of the first- (scond-) mode band, 
A E y q  = El(*) - E1(2)lh/E,&, = E(kt(2) = 0 ) .  Ellh, the cunent-threshold 
energy, is taken equal 10 h 2 ~ 2 [ 2 m * a 2 ( N  + For N > 6. AE1,2 is calculakd 
in the sixmode approximation. 

N - A E I  -AElEleIl2LI -AE2 - A E z E ~ ~ / I Z L I  
1 0.125 0.154 - - 
2 0.215 0.118 
3 0.261 0.0796 0 0 
4 0.281 0.0555 0.032 O.OM2 
5 0.294 0.0405 0.074 0.0102 

- - 

6 0.305 0.0307 
7 0.310 0.0240 

0.11 0.0111 
0.138 0.0106 

8 0.316 0.0193 0.159 0.0097 
9 0.318 0.0158 0.176 0.0087 

10 0.322 0.0131 0.189 0.0077 
20 0.333 0.0037 0.246 0.0028 
a t  0.335 0 0.262 0 
U[l] 0.34 0 0.28 0 

t C L  - the continuum limit. 

The dependence E , ( N ) ,  as distinct from the ground-state energy, in the 
intersection of narrow channels differs drastically from the 1/wz law predict& by 
the continuous model. The function IAE,(N)I, if non-scaled (i.e. in its natural units 
21LI but not in units of El,,,), is non-monotonic and has a minimum at N = 6. For 
this reason, deviations from the l /wz  law in A E z ( N )  become pronounced for wire 
widths appreciably greater than in the case of the ground state. 

The results for the discrete model discussed above refer to the bound states in 
the lower part of the spectrum (if L < 0). The continuous spectrum of the discrete 
system is restricted and, therefore, symmetric bound states appear in the upper part 
of the spectrum: El has its counterpart above the highest odd band and that of Ez 
is above the highest even band. Thus, the highest state in the crossed-wires system 
with even (odd) N is the odd- (even-) parity bound state whose energy is above the 
continuous spectrum of the system. 

4. Scattering probabilities for the fundamental-mode propagation 

Only the first-mode electron wave can propagate in the system in the energy interval 
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E 
2L 

~ 0 ~ ( 2 k , h )  - 1 6 -  COS(^,) + COS(!C,~) - 2 < coS(k,) - 1 

~~~ ~~~ ~ ~~ 
~~ ~ 

~ ~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~ ~~~~~~~ ~~~ ~~~ 

(for the continuous model, kth 4 4- < 2k,). Since mode-transforming 
processes are forbidden, the fundamental-mode propagation is especially useful for 
applications. Note that for 30nm wire width and an effective mass m' = 0.05m,, 
the first-mode band covers the interval k T  at room temperature. 

As in the preceding section, we use the solution of equations (15)-(19) in the 
six-mode approximation to find the scattering probabilities of reflection (R), forward 
transmission (T) and side transmission (S) 

(27) x+ + X i , )  t i ,  = I (  1 x+ k ,  -x- k , )  'ki = T( kt 

where 

The functions i$ and QF?, QT? are defined in equations (23) and (B), respectively 
(with - replaced by +). The wave vectors kj in equations (25) and (26) should 
be interpreted as ik, for j = 1 and kj for j > 1. (In the case of second- 
mode propagation, k, are ik,, ilc, for j = 1,2 and kj for j > 2.) lb obtain 
the exact expressions for the scattering amplitude in N-chain crossed wires with 
N = 1,2, .  . . ,5, one should, as above, omit the terms with the indices 2 to 6, 3 to 
6 , .  , ., and 6, respectively. 

The dependences R(k,) = Irk,IZ,T(kl) = It;,I2 (S(kl) = 1-R-T),calculated 
in accordance with equations (27) and (28), are displayed in figure 2 to show how 
the transport characteristics are transformed between the limiting cases N = 1 and 
N W 1. It is clear that if N > 9, the characteristics of the fundamental-mode 
propagation in crossed wires as functions of k,/kth depend rather weakly on the 
chain number. Even the curves that correspond to N = 3 are not very much different 
from those calculated in the continuum limit (see figure 2). The only exceptions in 
this sense are the cases of N = 1.2. 

5. Discussion 

We consider the scattering problem in crossed ZD N-chain wires viewed as a square- 
lattice atomic arrangement with each site atom coupled to its nearest neighbours via 
the electron resonant-transfer interaction. In this way, the discrete nature of real 
electron channels is taken into account. At the same time, the continuous analogue 
of the model studied previously [l] is also included as a particular limiting case. An 
obvious advantage gained is the possibility to follow the dependences of the bound- 
state energies E,,* and the scattering probabilities on width down to the minimal wire 
width, N = 1 (w = 2a). The continuous model predicts for the crossed wires (and 
similar discontinuities) E,,? - 1/w2. It thus reveals a disappointing property: E,,, 
tends to infinity as w tends to zero  the classical minimal width. This unphysical 
result is removed simply in our approach, owing to the correct definition of the 
minimal wire width. 
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Figore 2. Ballistic transport characteristics in the crossed-wire system as functions of the 
elecfron’s longitudinal wave vector kl for different numbers of chains in the wires. (a) R 
is the refleclion probability of the crossing, and (6) T is the folward-through-crossing 
transmission probability. The chain number N equals 1, 2, 3, 9 for the c u m  1, 2, 3, 4, 
respectively. Thevalues of !q that satisfy theequation cm(kl)+cos(kfi)-cos(Zkfi) = 1 
correspond to the opening of the second-mode propagation. These values are indicated 
byarrows: k l / k t h  = 1 . S ( N = 2 ) , L l / k ~ = l . h 2 1  ( N = 3 ) , k l / k l h = 1 . 7 1 7 ( N = 9 )  
(kth = r / ( N  + 1)). On the scale given, R and T for N = 9 (curves 4(a) and (b)) are 
undistinguishable from those in the continuum limit. 

The ground-state energy in units of Elth is nearly constant, down to the channel 
width - 25 nm (for the sake of evaluation, a is set equal to 0.5nm). In more 
narrow channels (w < 2.5 nm), an increase of E, in response to a decrease in w is 
appreciably slower than the l /w2  behaviour that wide channels obey. 

A qualitatively different behaviour is predicted for the dependence of the 
excited bound-state energy on channel width. E,( N )  is a non-monotonic function. 
Its minimum lies at N = 6 (in table 1, it corresponds to the maximum of 
~ A E 2 ~ E I t h / ( 2 ~ L ~ ) )  and reaches the maximum value EZth in more narrow (N = 3) 
and in infinitely wide channels. Deviations from the 1/ wz law are appreciable when 
w - 50 nm and less. The continuous model does not describe all these peculiarities 
of the width dependence of E, in ultra-narrow channels. 

Just as for the ground-state energy, the characteristics of the single-mode electron 
transport in crossed wires are insensitive to the wire width down to w - 25 nm if 
the wave vector scales as kth. But a further decrease of the width leads to noticeable 
transformations in the k,-dependences of the scattering probabilities, which tend to be 
closer to the case of the crossed chains: the minimum of R(k,) and the maximum of 
T(k , )  and S( k,) are shifting to the left, to the point k ,  = (.,,. A general property of 
a crossed N-chain wire system is that the forward transmisslon is essentially improved 
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by enlarging the chain number from N = 1 to N = 5; if N > 9, the transmission 
becomes nearly constant. 

In conclusion, we note that the approach developed here can easily be adapted 
to relevant m structures such as T-stub configurations, constridom, double and 
multiple right-angle bends and similar systems. We believe that this allows a 
more comprehensive analysis of these systems, which are of current interest for 
nanoelectronics and molecular electronics. 
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Appendix. Scattering-amplitude equations for the continuous model or the crossed- 
wires system 

The scattering-type solution of the Schrddinger equation (2) with the Hamiltonian 
H = -hz/(2m')A inside the outline in figure 1, and with an infinite potential 
outside this outline, has the form 

m 

1 = 1  

where the coordinate axes I (i) and y (1) originate from the left-hand upper corner 
of the intersection region, x, = r j / w  and k;o + = k; + xf. The expansion 
coefficients in equation (Al) can be found by matching the wave functions Q7=,,,~,,,, 
and ?+bin and their derivatives at the boundaries of the region of intersection with all 
the other regions. 

The condition of continuity of the wave function at the boundaries gives 

f = 'k, + D k ,  = 'i,,, f 'k, 
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at I = 0, we obtain 
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Equating derivatives of +, and 

i c  ki[6i,j, - rpkj - ( Ckj - Dkj 11 S ~ ( X ~ Y )  
m 

;=1 
m 

Excluding from equation (A3) the coefficients Akj, B k j ,  C k j ,  D k j  and making use 
of the relations 1 sin(Xjy)sin(kj,y)dy = (-l)jt’ x: ‘j - kj, sin(kj,w) 

U 

we find 

exp(-ikjw)rk, = -6i,j,exp(ikiw) + tk, 

(ti;, + (-l)j+%>,). 
sin(kiw) xjxj, 

kiw j t = i  I 
x? - k?, + 2  

After introducing dimensionless units qi = k j w / n  and notations 
2 j j ‘  Gc , - -- 

I d ’  - 32 - q;, 

we finally rewrite equation (A4) as 
exp(-ixqj)rqj = -6j, j0 exp(irrqj) + t i ,  

+ 2 q,;,ct;;, + ( - l ) i + l t d  q j ,  ) . 
Qj j r , i  

The rest of the equations for rk, and t i ,  can be obtained in a similar way. The result 
is 
exp(-i?rqj)tij = 6j,jo + rqj 

+ sin(TQj) C ( - l ) ; ’ + l q , j , ( t Y P  + (-l)j+yj,) 
q j ,  

qj j,=i 

t q , j t ( r P j ,  + (-l)w;j,). 

Equations (M)-(AS) are exactly the same as equations (15)-(19) in the continuum 
limit. 
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